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A new type of D = 10 harmonic superspace with two generations of harmonics allows us to 
reduce the D = 10, N = 1 Brink-Schwarz (BS) superparticle to a system whose constraints are all 
first class, functionally independent and Lorentz-covariant. Given these properties, the covariant 
BFV-BRST quantization of the system is straightforward. By second quantizing this system, we 
circumvent the no-go theorem which forbids the existence of a covariant off-shell unconstrained 
superfield action for the linearized D = 10 super-Yang-Mills theory. 

1. Introduction 

M u c h  progress was made recently in the Lorentz  covariant first and second 
quant iza t ion  of  the Ramond-Neveu-Schwarz  (RNS) spinning string [1, 2] (for a long 
list of  references see the book [3]). 

Since R N S  has only first class constraints, the Batalin-Fradkin-Vilkovisky- 
Becchi-Rouet-Stora-Tyut in  (BFV-BRST) approach [4, 5] applies quite directly. 

In  view of  the importance of  manifest space-time supersymmetry (anomaly 

cancellation, finiteness, vanishing cosmological constant  etc.) for the superstrings 

[6, 3], it is of  interest to obtain similar results also for the Green-Schwarz (GS) 

superstrings [7, 8]. 

The quant izat ion of  the GS superstring as well as the quantizat ion of  its 

point- l imit  - the Brink-Schwarz (BS) superparticle - [9,10] presents, however, two 
major  problems:  

(i) It  contains  second class constraints which lead to highly complicated canonical  
Di rac  brackets  [8]. 

(ii) Both  the second class constraints as well as the first class constraints - the 
local fermionic r - s y m m e t r i e s -  are functionally dependent  when expressed co- 
variantly.  In  the terminology of  [11,12], they form a reducible set. 
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In spite of intense efforts to overcome them, these problems prevented for years 
the consistent covariant quantization of the GS and BS systems. 

In ref. [13] it was pointed out that for the GS and BS systems, the BFV procedure 
[11,12] of treating correctly reducible constraints breaks Lorentz covariance if the 
level of reducibility is to remain finite*. 

A way to solve this problem was proposed therein by pursuing the idea of 
introducing additional pure gauge-degrees of f r e e d o m -  bosonic Lorentz-spinor 
harmonic variables - which permit a covariant irreducible formulation of the con- 
straints. 

The concept of harmonic superspace was first introduced for D = 4 and in a 
different context in refs. [15]. Further, a covariant "light-cone" harmonic superspace 
in D = 10 was proposed in ref. [16]. The latter, however, contains Lorentz-vector 
harmonics only, which are insufficient for a covariant and irreducible disentangling 
of the D = 10 fermionic superparticle constraints. 

Some unpleasant features in the formalism of [13] (obscure geometrical meaning 
of the spinor harmonics, BRST charge of rank 2) were overcome and an essential 
further progress was reported in ref. [17]: 

(a) A significantly simpler and geometrically more meaningful construction of the 
D = 10 harmonic superspace was presented. Now the bosonic harmonic coordinates 
carried Lorentz-spinor as well as Lorentz-vector indices. Also, the rank of the new 

Q BRST w a s  one. 
(b) A covariant off-shell unconstrained superfield action for the linearized D = 10 

type I I B  supergravity was found. 
(c) The mechanism of converting second-class constraints into first-class ones 

preserving all the way the physical content of the theory (i.e. without introducing 
unphysical degrees of freedom) was elucidated. 

The procedure of ref. [17], however, exploited in an essential way the existence in 
the type II B theory of two Majorana-Weyl spinors of the same handedness. This 
was unfortunate because it excluded some very interesting cases. 

In the present paper, we give a generalization of our treatment of the BS 
superparticle which applies equally well both to N = 1 and N = 2 (type I I B  as well 
as type II A) cases. 

Using the BFV-BRST approach for the covariant second quantization of con- 
strained systems [18], we also find an off-shell unconstrained superfield action for 
the linearized D = 10, N = 1 super-Yang-Mills (SYM) theory. In ref. [17] the analog 
result for the linearized D = 10, N = 2 supergravity was reported. 

These results emphasize the strengths of the harmonic superspace techniques. 
Indeed, outside the harmonic superspace framework, the construction of the above 

* The recently proposed formalism of ref. [14] for BFV quantization of the heterotic string with finite 
level of reduciblity breaks the Lorentz-invariance explicitly by introducing two constant light-like 
oectors which are not dynamical degrees of freedom. 
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covariant actions is probably impossible. (See refs. [19], [20] for the exact formula- 

tion of the respective no-go theorems.) 
We use the harmonic variables introduced in ref. [17] to separate covariantly and 

irreducibly the first and second class constraints. We introduce a second generation 
of harmonic va r i ab l e s -  the same as in ref. [21 ] -  which allows us to reduce 
covariantly the 8N second class constraints to 4N first class constraints. 

In essence we recognize half of the second class constraints as the gauge fixing 
conditions for the other half which are thereby recognized as generators of new 
gauge transformations. By renouncing the gauge fixing, these generators become 

first class constraints to which one can apply the BFV-BRST approach. 
I t  is useful to consider the present paper in conjunction with ref. [21] where we 

quantized covariantly the Green-Schwarz superstring. 
The harmonic structure is identical in the two papers. 
However, in the superstring case it is impossible to repeat without further 

modifications the operations which permit us here to reduce the 8N second-class 
constraints to an equivalent set of 4N first class constraints. In ref. [21] we were 
obliged to proceed by f i x i n g  covariantly the K- and reparametrization invariances. 

Therefore, the present paper offers a glimpse to the kind of structure we would 
have obtained in the superstring case if we could go through with the quantization 
while keeping explicit all the gauge invariances. 

The plan of the paper is as follows. In sect. 2, we present the general strategy. In 
sect. 3, the basic properties of the two generations of harmonic variables are 
recapitulated. (The reader might find useful to consult [17, 21] for technical details.) 
In sect. 4 we construct the harmonic form of the BS action. It contains only first 
class irreducible Lorentz-invariant constraints. In sect. 5 we perform in detail the 

covariant first quantization of the N = 1 super-particle. The spectrum is identified 
as that of D = 10, N = 1 SYM. In sect 6 we discuss the BFV-BRST covariant 
second quantization. The first-quantized BRST charge of the N = 1 BS superparticle 
is used to construct an off-shell covariant unconstrained superfield action of the 
linearized D = 10, N = 1 SYM. 

2. General strategy 

The standard form of the BS superparticle action in D = 10 superspace (x ~, 0A)* 
written in the hamiltonian form reads: 

HT = )~p2 + E ~ A d a .  (2.2) 
A 

* A = 1 for N = 1 and A = 1, 2 for N = 2. For the spinor notations and conventions, see the appendix. 
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In eq. (2.1), 0 A are Majorana-Weyl (MW) spinors. For N- -  1 we take 0 = 0~ to be 
left handed. For  N = 2 there are two cases: 

(i) type I I B  - both 0 A = 0A~ have equal (left-handed) chiralities; 

(ii) type II A - the two 0 A have opposite chiralities: 01 = 0x~ , 02 = 0~ ( -  - C~1~021~) 

(here C ~ denotes the D = 10 charge conjugation matrix, see the appendix). 
The fermionic constraints 

d A = - ipo A - ~ 0  A , (2.3) 

( dA, d• )PB = 2 i ~ A 8 t ~ ,  (2.4) 

form a mixture of 8N first class and 8N second class constraints on the constraint 
surface p2 = 0. 

Therefore, only half of ~bA's are arbitrary Lagrange multipliers, the other half 
being determined from the consistency of the dynamics determined by H x (2.2) with 
the whole set of constraints [22]. 

A serious drawback of (2.1) is that it is impossible to disentangle in a Lorentz- 
covariant and functionally independent way the first-class and the second-class 
parts of (2.3) [23]. 

In general it is always preferable, and sometimes essential, to work with first-class 
constraints only. (The appearance of inverses of operators in the Dirac brackets 
might interfere with a local formulation of the theory [3].) Therefore, instead of the 
initial mixed set of 8N first and 8N second class constraints d A (2.3) we want to 
take a set of constraints containing just 12N Lorentz-covariant irreducible first class 
constraints. Of course we want the new system to describe the same physics as the 
original one. 

We will achieve this task in two steps, each of them based on the use of a 
different type of harmonics. 

The first step consists in separating the first class from the second class con- 
straints and expressing each set covariantly, still, irreducibly. The harmonics that we 
use at this step are identical with the ones in ref. [17] and parameterize the coset 
SO(1, 9)/SO(8) × SO(1,1). In fact the 8N first class constraints are represented with 
the help of these harmonics as N sets of SO(8) (s)-spinors whose components are all 
Lorentz-scalars. The same is true for the 8N second class constraints. 

The second step is to recognize the set of 8N second class constraints as a set of 
4N first class constraints together with their respective gauge fixings. This step is 
realized with the help of a second set of harmonics parameterizing the coset 
SO(8)/SU(4) × U(1) [21]. In fact, the 4N first class constraints are expressed with 
the help of these harmonics as N SO(6) (s)-spinors (i.e. 4 of SU(4)) whose 
components are SO(8) scalars. The 4N "gauge fixings" are expressed as SO(6) 
(c)-spinors (i.e. 4 of SU(4)). By renouncing these gauge fixings, one is left with only 
irreducible covariant first class constraints which can be treated ~t la BFV-BRST. 
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The equivalence between 2K real second class constraints and K holomorphic 
first class constraints is explained in great detail in the appendix C of ref. [17]. 

In the next section, we introduce the harmonic variables. 

3. Harmonic  variables 

In ref. [17], we proposed a D = 10 harmonic superspace whose bosonic harmonic 
coordinates consist of the following objects: 

(a) two D = 10 left-handed MW spinors v, -+ ~, 
a (b) eight (a = 1 . . . . .  8), D = 10 Lorentz-vectors u s. 

These variables were defined to satisfy the constraints: 

+~ " +~ ] = - 1  

u~u 6~' = C ah. (3.1) 

In the last line of (3.1), C ab denotes the D = 8 charge conjugation matrix. 
Under the local rotations of the internal subgroup H = SO(8)x SO(l,1), u~ 

transform as SO(8) (s)-spinors whereas v +~ carry + ½ charge under SO(I, 1). 
Because of the remarkable D = 10 Fierz identity (cf. e.g. ref. [3]): 

(o~)°~(o~) , '  

the composite vectors 

+ (o~)B~(o~)o, + ( . . ) , o ( o . ) ~ ,  = 0, 

t aB  t 

u2 = v:2(o.) v~2 

(3.2) 

are identically light-like. Using the set of u + (3.3) together with u~ from (3.1) one 
obtains a realization of the coset space SO(1, 9)/SO(8) x SO(l, 1). 

Henceforth, we shall use the shorthand notations: 

u~ asin (3.3), 

o a ~  p, a 0 Ill, ~ 

o -+= or( v-+ '2%v- 12). (3.4) 

The second generation of harmonics [21] realizes the coset space SO(8)/SU(4) × 
U(1) through the variables w2, ~a k subjected to the constraints: 

c ,~(w2~ + w : ~ )  = co~, (3.5) 
or, equivalently: 

Wake/a= C k/. 

(3.3) 
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Here C ki= C ik denotes the D = 6 charge conjugation matrix (cf. the appendix) 

(recall that locally SU(4) -- SO(6)). 
There are two groups, H = SO(8) x SO(1,1) and K = SU(4) x U(1), which act as 

internal groups of local rotations on wf, w~. The latter transform as (8, 0) under H 
and as (4, + ½), (4, - ½) under K, respectively. 

The following harmonic differential operators (which preserve the harmonic 
constraints (3.1) (3.5)) play an important role in the present approach: 

0 0 0 0 
w a k  ~ a k  Dab  = U a b _ _  ..[_ _[_ 

P" OUlx b Ul~SUp.a OW k OW~ 

0 0 
_ w b k  _ ~ b k  

Ow~ a~' 

0 0 
D - + = ~  +'-------v - ½ v ~ - ~ - -  (3.6) 

~V~ , o v  +~ Ov ~ , 

0 0 
D+a_ + _ _  + ½v-~o+ oa------r , 

-- UI~ OU~a OO - ~  

\ 2  ] k "~ 1 W a 0 W a 

( o %) 
E+-=l  w2o # ~, , 

1 i 0 
E + ' =  ---~w~(ol)k (3.7) 

0 ~ j '  ! / 2 - - "  " 

where we have used the notations: 

0,~= ~(p,~J-  pJ~'), 
~,J = ~ (~'pJ _ ~p, ) ,  

with pl, ~I ( i  = 1 . . . . .  6) being the D = 6 o-matrices (cf. appendix). 
Dab, D -+ and D +a form a closed algebra. The first two of them are easily 

recognized as generators of SO(8) x SO(l, 1) where the subgroup SO(8) is taken in 
the (s)-spinor representation, whereas D +a are precisely the half of the coset 
generators corresponding to SO(1, 9)/SO(8) x SO(1,1). 

Similarly, E rs and E +- are recognized as generators of SU(4)× U(1), whereas 
E +I are the half of the coset generators corresponding to SO(8)/SU(4) x U(1). 
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The general harmonic superfield ~ =  ~ ( x ,  OA; u, v , w )  is defined through its 
harmonic expansion. It is most appropriately expressed by first expanding • with 
respect to SO(8)/SU(4)x U(1) and then, expanding the coefficient fields with 
respect to SO(1, 9)/SO(8) x SO(I, 1). 

We have explicitly: 

oo 1 
, ( x ,  OA;, ,v,w)= E ~.w~b,... w 2~.bn*~°'~'~ , , o~,.u,v), (3.8) 

n = 0  • 

where WEb =-- W(,,~blI, is the only independent SU(4) x U(1)-invariant combination of 
w's (3.5) and the coefficient fields ~, in (3.8) are singlets with respect to the "small" 
group SU(4) x U(1) and traceless in any pair of SO(8) indices. 

A slightly more general situation which will occur in sect. 5 below is when the 
harmonic superfield (3.8) processes an overall U(1)-charge h which is not carried by 
the w 's. The way to express this property is to add a "non-orbital" part to the U(1) 
generator E +- which does not act on the w's: 

(0 
~" ~ + h ,  (3.9) ~+-= ~ Wa~ Ow2 OF" 

~0 = h , .  (3.10) 

Of course, /~+- (3.9) obeys the same commutation algebra with E u,  E +I as E ÷- 
does. 

On their turn, the components in (3.8) can be expanded: 

~ [ r t a ' b a ] ' " [ a n b n ] ( x ,  O A ' U , O )  = £ [ U ~ :  . .  U~:  ] singlet part in (Cl " , • .. Cr) 
r , s = 0  

1 1 1 1 

XO~ ~ . . .  V + ~ V - ~  O-~  ~s ~ts+l " " " ~t2s 

x~talbl]...[anb.]b . . . .  P ' ra l  ....... (X, 0~) (3.11) 
- n; r$ 

where the coefficient fields ~ ;  ~ in (3.11) do not carry indices of the "small" group 
S0(8) x SO(l, 1) except for the external ones and are similarly subject to traceless- 
ness conditions explained in ref. [17]. In fact the harmonic expansions (3.8), (3.11) 
already reflect the fact that: 

E I ] ~ = E  + q~=0, 

Dab~ = D - +  ~ = O. 

Now, as already demonstrated in refs. [17], [21], if • (3.8), (3.11) satisfies the 
harmonic equations 

E I]~ = E - +  dP = E+ I ~  = O, 

Dabdp = D - +  q3 = E + a ~  = o , 
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then it has the properties: 

I~[nalbl]'"[a"b"](X, O A ; U , u ) = O  for n 4:0; 

~ , . . . , r~  .... ~2"(x, OA) = 0 for (r,  s) + (0,0) 0;  rs 

~0,00(x, 0A) arbitrary, (3.12) 

i.e. ~ is in fact independent of u, v, w. 
The same result (3.12) is obtained for harmonic superfields (3.8) carrying an 

overall U(1) charge (3.10). 
The property (3.12) expresses the statement (on the first-quantized level) about 

the pure gauge nature of the harmonics. It insures the complete equivalence between 
the harmonic superparticle action of the next section and the standard BS action 
(2.1). In spite of their pure gauge nature, the harmonic degrees of freedom play an 
essential role in the subsequent construction, where we perform a suitable transfor- 
mation mixing in a nontrivial way 0 A and u, v, w so that we can solve covariantly 
the irreducible covariantly disentangled set of superparticle constraints (cf. sects. 4 
and 5). 

4. The harmonic superparticle 

Equipped with the harmonic formahsm of the preceding section, we can now 
explicitly implement the program described in sect. 2: the Lorentz-covariant sep- 
aration of the first class and second class parts from the constraints (2.3) of the 
action (2.1) and the transform of the second class constraints into first class ones. 

The solution of the first task is provided by the decomposition of the 16-compo- 
nent D = 10 Lorentz-spinors d A (2.3) into direct sums of two internal SO(8) 
(s)-spinors each of which consist of 8 Lorentz-scalar components. 

For N = 1 and N = 2 type II B superparticle the decomposition is: 

< =  d;e + (4.1) 

where p + -  v + ~ZCv + 12 or, by inverting (4.1): 

1 1 a (4.2) 

g~"= ½(v-'2o%+dA). (4.3) 
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For N = 2 type II A superparticle the decomposition is: 

d 1 - same decomposition as in (4.1) 

1 (o+obv_12)~d;b,2 + __(~ObV+,)~g;h ~ d za 7r~ p + p+ ' 

g2 ~a= 

The canonical Poisson brackets are now rewritten as: 

{ dA+~o,, -.'4+ ~b J~ p. = --2iSA"Cabp +p2, (4.4) 

( g-~½a g~ lzb }PB-~-iSA"C°bp+' 

{ = (4.5) 

The Poisson brackets imply that the d~ ~ are first class on the constraint surface 
p2 = 0, while the g ~ °  are second class. 

Now we will reduce the 8N second class constraints g+)° to 4N first class 
constraints. 

We have to do it without breaking the harmonic SO(8) gauge invariance. This is 
achieved by using the second generation harmonic variables wf described in the 
preceding section. We introduce the following linear combinations of the second 
class constraints: 

+~k_ k + l (4.6) gA _ Wag A ~a, 

g~ l~k = ~ g ~  ~2a. (4.7) 

The Poisson brackets of the new second class combinations are: 

{ g~-lk, g,~ '~k )p.  = ( ~ '2k, ~ ~k } e" = 0. (4.8) 

It is now clear that according to [17] one can discard the ~,~ ~:k as mere gauge fixings 
and recognize g~ [k as new first class constraints. 

It is then immediate to write the hamiltonian as a sum of Lorentz-invariant 
irreducible first class constraints and to write the QBRST according to the standard 
formula (sect. 6). 
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Thus we arrive at the following form of the action for the D = 10 BS superpar- 
ticle: 

Sharmonic = [dT[P~O,X ~'+ EPoAO~O~ +p~O~u~° +P~I~ O~v:~+~ 
~ L A 

q_pawk O,rWa k q_pa  O,r~ ~ __ Oharmonic] ' (4.9) 

nharmonic = ~kp2 + 2 ( X ~ d ~ ' 2 ~ + X ~ } g ~ ' 2 k ) + a a b d ' ~ b + A + - d - +  
A 

+ A S d  +~ + M t j e  lJ + M - +  e + - +  M i e  +I. (4.10) 

The purely harmonic constraints dab, d +-, d +a, e I J, e +-, e +~ in (4.10) denote the 
classical counterparts of D "b, D -+, D +~, E Is, E +-, E + r (3.6), (3.7). ~, 2t~'2a,..., M /  
are arbitrary Lagrange multipliers. 

1 a Because of the kinematical constraints (3.1) (3.5) on the variables u,, v + 2, w~, ~a k 
defining our harmonic superspace, their conjugate momenta are kinematically 
constrained too: 

p~(aub)  = 0 u --~ 

( ' 
a V+~O~V + _ = O, P u~, 

l l _ l  l 

v+~p;~  " + v~ ~p+ ~ = 0, (4.11) 

a - - / ' _  

PwkWa -- O, 

a 1 _ _  p~kw~ - O, 

pwkwa - O, 

a l _ _  pwkWa--O. (4.12) 

The constraints (3.1), (3.5) and (4.11), (4.12) may be equivalently regarded as a 
system of conjugated second class constraints and thus all subsequent Poisson- 
bracket relations are in fact Dirac-bracket relations on the surface defined by (3.1), 
(3.5), (4.11), (4.12). 

5. Covariant first quantization 

Proceeding to the quantization of Sh~moni ~ (4.9) we shall discuss in detail the 
N = 1 case. For N = 2 type I I B  superparticle, the same results are recovered as in 
ref. [17] (where only the first generation of harmonics was used). For N = 2 type II 
A superparticle the results are completely analogous to the latter case with the only 
difference occurring in the C P T  properties of the spinorial coordinates. 
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According to (4.10), the covariant first-quantized Dirac-constrained equations for 
the N = 1 harmonic superparticle read: 

pQ=o, (5.1) 

G+~k~~:W,k:(U-f~~‘cJ+D)~=o, (5 4 

D+fa@ G u+iaa@@= 0, (5.3) 

Dab@ = 0, D-+@=O, D+V=O, (5 -4) 

EIJ@=O 9 (i+--h)@=O, E+‘@=O, (5.5) 
where now 

D ab, D-+, D+a, ErJ, I?-, Ef’ are as in (3.6) (3.7), (3.9) and the superfield wave 
function Cp = Q(z) is taken in the p,, momentum-representation space i.e. z = 
(p,, 8; u, u, w), and may carry an overall U(1) charge h (3.10). 

We want to analyse covariantly the physical content of the system characterized 
by (5.1)-(5.5). 

Before doing this, let us briefly comment about the equivalence of the system 
(5.1)-(5.5) with the noncovariant light-cone formulation. Indeed, we can first solve 
eqs. (5.4), (5.5) in the original coordinate basis (central basis in the terminology of 
ref. [15]). The solution, given by (3.12) is then substituted into the remaining eqs. 
(5.1)-(5.3): 

P2@0,00(Z) = 0, 

f~~~(~-f~~~+D)Qj~,~(z) =O, 

U+ fa"~D@,,,,( z) = 0. (5.6) 

Since in the last two eqs. (5.6) the harmonics are completely arbitrary and since, on 
the other hand, @0,x,(z) d oes not depend on them, we can actually choose the 
harmonics to point in fixed directions in Minkowski space consistent with the 
harmonic constraints (3.1), (3.5). In particular, choosing u;, r.42 (= u’:o,u “) to 
correspond to the transverse and light-cone space-time directions, respectively, and 
choosing w,” to correspond to the first half of the transverse dimensions, we arrive 
precisely to the [SU(4) X U(l)] light-cone description of D = 10 SYM theory (ch. 11 
of ref. [3]). 

In order to solve couariantly the system (5.1)-(5.5) one has to perform on the B’s 
the same kind of covariant decomposition which we performed on the constraints 
d” (4.1). We make first the following change of variables 8, --f (p’ f”, II/’ t’: 
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q, ÷ ~: = v-~o°o ÷~¢O , 

q+ l  =v+ 'o .O"  

We further decompose ~+ ' :  (5.7) as follows: 

(5.7) 

(5.8) 

Now we can use a new set of canonical coordinates: 

( p~, q~+ ':*, ~+ ~2k,~--+~:,u,v, w) (5.9) 

instead of the old one (x", 0,, u, v, w)*. 
In terms of (5.9) the (quantized) fermionic constraints take the particularly simple 

form: 
0 

G +~k =p+ ld~ +'2k, ( 5 . 1 0 )  

O 
D +~" =p+-- +p2~b+~" (5.11) 

Oq~+a ~ 

Accordingly, the harmonic constraints (3.6), (3.7) take the following form in the 
new coordinate basis: 

0 0 
b . b =  Dab+ ~ + ~ - -  _ ~+ % - -  

o~/;~ oqv'2 ' 

b-+=D-++½[q,+~ 0 +cO+ ' +~+" O ] ~ k  1. 
0~2~ Oq' ÷ l~k O~+~k ' 

b +a = D +a, (5.12) 

/ ~ + - = E + - +  ![q~+'2k 0 _ ,. 0 ] 
2[ 0,+~, '~+2k0~÷,2k , 

0 
/~+ /=E +/-t.-d~+}k(pl)k I 0~/+12 1 1 p+  ,t,+12 t . (5.13) 

* We shall not  need the complicated explicit formulas expressing the new canonical momenta  
conjugated to (5.9) as functions of the old coordinates and momenta.  
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With (5.10)-(5.13), the Lorentz-covariant solution of 
comes completely straightforward. We obtain: 

195 

the system (5.1)-(5.5) be- 

w>, (5.14) 

(5.15) 

Moreover, we can impose the following covariant off-shell reality condition on Qi, 
expressing its CPT self-conjugacy property [24]: 

As a consequence of (5.16) we get that Cp carries an overall U(1) charge h = 1 (cf. 
eq. (3.10)). 

Comparing (5.14)-(5.16) with the corresponding formulae in the non-covariant 
light-cone quantization of N = 1 BS superparticles (eqs. (11.7.25)-(11.7.27) of ref. 
[3]) we see that the above equations constitute a Lorentz-covariant on-shell super- 
field description of D = 10 linearized SYM theory. The off-shell (i.e. action-princi- 
ple) description will be given in the next section. 

6. BFV-BRST quantization 

According to the general theory [4], the BRST charge QBRsT may contain higher 
order ghost terms if the canonical PB relations among the first-class constraints 
involve nontrivial first-order structure functions (i.e. structure “constants” of the 
algebra of constraints which depend on the canonical variables). 
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The latter situation indeed arises in one of the PB relations for the harmonic 
superparticle constraints (4.4)-(4.5). 

However, one can check straightforwardly, e.g. by using the explicit formulas of 
ref. [4], that in the present case the second order structure functions and, therefore, 
all higher structure functions identically vanish. 

Thus, QBRsx of the N = 1 harmonic superparticle (4.9) is first rank: 

QBRST Q0 -'F f ) ( 1 )  -'F / ' ) ( I I )  = k:~ h a r m o n i c  ~ h a r m o n i c  , 

1[ (0 
Q o = a  cp2 + i C Oc 

00 
+ ' - -  + 2 ~ G + l ~ k +  - ~,, 2 t Oa ~ X. '~D+' 

(6.1) 

O O O O O 
' ' _ ~ ( 6 . 2 )  - - X 2 2 X - - 2 a P d - a O C  O~]k ~ 02~- 12 k O ~j212 02d- 12 a 

where a -- V~-,  

O O O O 
/3(I) - -  i ~ l a b  D ~ + X-12a-----T -- X ~b + 71-a _ _  _ b 
~ h a r m o n i c  - -  OXb~ OXa~ O~lb '17 O~ a 

o bo] 
O%d 

+iT  D - + _  1 X - ~ 2 _ _  _ 2 a 
Ox2 ~ 

! 2 '2 ~ - n2 2 k 02;~  ~ 2  

0 0 
+i712D +" + i - -  

OA ab O ~l ab 

O O O O 
+ i - -  + i  

OA + all OA-"  Ofl +~ ' 
(6.3) 

Q(II) _i~IJ[EIJ 1 - -  ~ (tSIJ) ~ _ ~  
h a r m o n i c -  - -  2Xk . 

0 0 - - :  +~ ~ - - - U J - -  
2 O~ J O~ I 

0 +~zK 
O( JK 
- - - - ~ J K + ] + i ~  

0 -- 1 
ff~+ - h - ~X ~ 

2 k 0 , 2  , 2 

O 8 O O 
- - - - + i - -  
OM u O(  n OM -+ Og 

0 0 
+ i - -  

O M - I  8~I" 
+ i~-ZE+'  + i (6.4) 
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The variables appearing in the above expression of the BRST charge are organized 

as follows: 

Lagrange multiplier ghost antighost of the constraint 

a C C p2 
- -  I 1 1 

I~k2 Xk ~ ~+~k G+12k 

~ j ~ ~ xo-  ~ ~ L + ~ ~ D + '~o 

A ~b ~ab ~l~t, D~h 
A +- 77 ~ D + 

A-~  71-~ ~1 +~ D +~ 
MIJ ~iJ (IJ EIJ 

M -+ ~ ( f f ~ + - h  

m - I  ~-r (+I E+I 

It will be useful in the following to give the common name ~ to all these variables: 

1 l 1 1 1 ~ l 

Aab, ~Tab, ~ab; a +-, n, ~; A-a, Ti-a, ~+a; MIJ, ~ZJ, (IJ; M-+, ~, ~; M i, ~-i, (+t).  

(6.5) 

Recall that from (5.16) the overall U(1) charge h must equal one. 
Starting with the QBRsT (6.1) we are now able to write down a covariant 

unconstrained superfield action for the linearized D = 10, N = 1 SYM theory along 
the fines of the Neveu-West approach [18]. 

Choosing a BFV gauge function q = O/Oc, the first quantized BFV hamiltonian 
[4]: 

0 =Ol 1 _~_lOc _~_. ~ HBFV = QBRSr, 7 c  p2 • 

has the same form as the one of the ordinary bosonic particle. 
Accordingly, we find the following second-quantized BRST action: 

SBRSV = fd~rdzd¢r:(u,c,w)[I~p+~(~r,z,;)] 

[1( 
× i o n -  p 2 + i ~ c ~ c  [ p + ~ ( T , z , ~ ) ] .  (6.6) 

The operator/£ in (6.6) acts on the ~-coordinates (6.5) only by changing the signs of 
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all the Lagrange multipliers and of the bosonic ghosts ha ':: 

R~( ~'~) ( ~k . . . .  - A ~ , . .  r , z ,  =q~ r , z ; - a , . . . ; -  ~,.. ; - ~ , - X ~ 2 , . . . ;  ; - A  +- • 

- A  -~ . . . .  ; . . . ; - M * "  . . . .  ; - V  + . . . .  ; - M - ' , . . . ) .  (6.7) 

The two factors p+ (recall that p+-= v + ~/~v +'= is Lorentz invariant because the 
superscript + is internal) in (6.6) are needed to compensate for the SO(1,1) charge 
( - 2 )  of the measure dL 

Similarly, the factor r 2 carrying U(1) charge two: 

. . .w~' (v  2OIalOa2Oa30~'lo 0 +'2) (6.8) r 2 ( u , v , W ) = ~ k l . . . k 4 w k  I ÷1 

is introduced in (6.6) to compensate for the U(1) charges ( - 4 )  of the measure d~ 
and ( +  2) of the fields ~. r 2 (6.8) possesses the following important properties: 

Dabr2  = D - + r  2 = D + a r  2 = 0,  

EIJr 2= E÷Zr 2= O, E ÷ - r  2 = 2r 2. (6.9) 

The action (6.6) is invariant under the (second quantized) BRST transformation: 

8BRST~('r, Z, ~ ) = AQBRsT~( r, Z, ~ ) (6.10) 

due to the operator identity: 

/~QBRsT = -- ( QBRST )T/~ (6.11) 

and because of the invariance properties of r 2 ( u ,  o, W) (6.9). 
The superscript "T"  in (6.11) means operator transposition and A in (6.10) is a 

hermitian and anticommuting global parameter. 
We impose the following covariant off-shell reality condition: 

~*(~, z, ~) = ~ / ~ ( ~ ,  z, ~). (6.12) 

ff denotes the operator of grassmanian Fourier transform of exactly the same form 
as in (5.16) (i.e. ff acts only on the original harmonic superspace coordinates 
z = (p~,  0~, u, v, w)).  

Let us note that by construction: 

[QBRsT, i f ]  = 0. (6.13) 

Eqs. (6.11) and (6.13) insure the consistency of the reality condition (6.12) with the 
BRST transformation law (6.10). 
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One can now further simplify our action by taking the Fourier transform with 
respect to those variables which change sign under the action o f / (  (6.7): 

( , , 

, c , z ; a  . . . .  ; ~ . . . .  ~ p ~ , X f ~ . . . ; A ~ b  . . . .  ; A + - , . . . ; A  -a . . . .  ; . . . ;  

M l J  . . . .  , M -+ . . . .  ; M - I  . . . .  ) 

[ O/ 
= [ r (u ,  v, w)]--4(p+)--lO / 

V 2qr 

× f dydS~-'~ ~ dSp-~ ~ d40- ~k dYabdY  + d Y + a d Z L 1 d Z + -  dZ+1 

× exp( i ay  + p + ~ ; ~ O  -'~k + p + ~ p ~ o - ~  a + i p + x ~ p - ~  a + iAa~y,~ b 

+ iA +- Y - + +  iA~ y+a + iMiJZl.t  + i M - + Z + - +  i M - I Z + I )  

× ~ ( ~ ,  z; y . . . . .  0 -'~k . . . . .  ~o~'~, p~ ~ . . . . .  

Yah . . . . .  Y -+ . . . . .  Y+a, '-" ZIJ  . . . . .  Z + - ,  . . . .  Z +I . . . .  ) .  

Then the action (6.6) acquires the form: 

SSRST = f d ' r d z d ( [ r ( u , v , w ) ] S [ ( p + ) - 2 ~ ( ¢ , z , ( ) ]  

[ 0 o p2_ o 0][ + 
× Oy O~" i o---c~ ( p ) - 2 ~ ( ~ ' z ' ( ) ] '  (6.14) 

1 1 1 

~ -  y , c , F ;  O-½ k,)(;~,X+½k; ~ , p ~ , ~ + ~ ; Y a b , 7 1 ~ b , ~ l , ~ b ;  Y +,~/,~; 

y +a, ~--a, ~+a; g lJ ,  ~,J, (,J; Z +-, ~, (; Z 1, ~-1, (+I)  (6.15) 

and the reality condition (6.12) becomes: 

~*( z, z, ~r) = ff~(,r ,  z, ( ) .  (6.16) 

The construction of a covariant unconstrained superfield action for the linearized 
D = 10 SYM theory and the analog result for the linearized D = 10, N = 2 super- 
gravity [17] circumvent the existing no-go theorems of refs. [19, 20]. The loophole 
allowing us to avoid these no-go theorems is hidden in the fact that the "ghost- 
haunted" harmonic superfield ~(~, z, ~), while describing on-shell a finite number 
of degrees of freedom, contains off-shell an infinite number of gauge and auxiliary 
superfields. 
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In complete analogy with ref. [17], the BRST action (6.14) possesses Parisi-Sourlas 
[25, 26] symmetries under OSp(1,112) rotations [18, 27, 28] in the subspaces parame- 
trized by the following (coordinates (6.15), respectively: 

(% y; c, 6), 

X~ +: , p~ ~ ; ~b; ~, o~- ~ , for each a ,  

~ 1 - -  ; , 

X +~,  X~ -~ ~;~ 0-'~k), for each k. (6.17) 

1 - - + 1  

In eq. (6.17), ~b~ +~, q ~  are the same as in (5.7), (5.8). Thus, after Parisi-Sourlas 
dimensional reduction [25, 26, 28, 29] we get the reduced BRST action: 

s(red) __ f dlOp d4qS+ ~* du dv dwd((red) [r(u, v, w ) ]  6 BRST -- 

X [ ( p + ) - 3 ~ ( r e d ' l p 2 [ ( p + ) - 3 ~ ) ( r e d ) ] ,  

((red)-- (Yab,,llab,~Jab; Y-+,7/,~; Y+,,/~ ~+" 

z ' ,  U ,  ( ' ;  z +-, ~, ~; z +', ~-', ( + ' )  (6.18) 

The action (6.18) is invariant under the reduced (second-quantized) BRST transfor- 
mation: 

" ,~ t o ( r e d )  t~ ( red)  ~ tr~OBRST.~.(red) = ~x~,:~BRST~ , 

( __° o+) o , .  + i n  D ++~dp+~k0q,+~2 k - r l  +lna 

J 0 

, 0 
+ i~ E + - +  ½q~+~k 0q ~+12k 

1 9 ] i~-1E+I_ y,h 9 _ Y-+ 0 

0 0 9 
- Y+~ Off * a -  - ZI" 0--~ y -Z÷-  ~ -  Z+' a ' -  Z + ' a ~  a~ a~ + ~ ' a  (6.19) 

Now, repeating the steps of [18], we can easily verify that the field equations of 
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motion corresponding to (6.18): 

p2~( r ed )  = 0 

together with the physical state conditions [30] (G is the ghost-number operator): 

(red) ¢~ (red) 0 ,  
BRST~ 

G t ~  (red) = 0 ,  

~(red) ~ ~(red) + /~(red) t~ '  f o r  a n y  ~* 
~ B R S T ~  

and accounting for the reality condition (6.16) yield the same Lorentz-covariant 
solution ~(z, u, o) (5.14) (5.15) as for the Dirac constrained equations (5.1)-(5.5). 
Here: 

C~( p,  ~+'=k, u, o, w) = ~o~ed)( p, dp +~k,u,v,  w, Y,,b, Y-+, Y+a, z tJ ,  Z + , Z + ' ) ,  

0 O 
(red) . . . .  ~ 

tgya b 0 o z + t  ~ 0  (red) : 0 

and ~0 ~red) is the zeroth order term in the ghost expansion of ~(red). 

7. Conclusions 

In the present paper we succeeded to reformulate the D = 10, N = 1,2 BS 
superparticles as constrained systems possessing Lorentz-covariant and functionally 
independent first class constraints only. 

The key ingredient of our formalism was the introduction of two generations of 
additional (pure gauge) bosonic degrees of freedom - the harmonics corresponding 
to the homogenous spaces SO(l, 9)/SO(8) x SO(l, 1) and SO(8)/SU(4) × U(1). 

The above harmonics are crucial in three contexts: 
(a) in the Lorentz-covariant separation of the fermionic constraints into function- 

ally independent first class and second class parts; 
(b) in converting the 8N covariant second class constraints into 4N covariant first 

class constraints, 
(c) in proving the physical equivalence of the covariant harmonic superparticle 

with the standard BS superparticle treated in the light-cone formalism. 
We also succeeded to find a covariant unconstrained superfield action of the 

D = 10 linearized SYM theory. 
In order to construct the complete nonlinear action within the BRST approach 

[18] one would have to find simultaneously both higher nonlinear interacting terms 
in the BRST action (6.6) as well as the higher nonlinear terms in the BRST 
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transformation law (6.10) in such a way that the complete action remains BRST- 
invariant. This task, although technically involved, is tractable since one expects 
finite number of higher nonlinear terms (unlike the case of D = 10, N = 2 super- 
gravity). 

There exists another harmonic superspace formalism [16] outside the BFV-BRST 
approach which offers a way to directly construct the complete nonlinear uncon- 
strained superfield action for D = 10 SYM theory. 

Our conjecture is that the latter result will be achieved after introducing a third 
generation of harmonics besides the two generations employed in the present 
formalism. This work is now in progress. 

A very important open problem is whether the present mechanism of converting 
the 8N second class constraints into an equivalent set of 4N constraints extends to 
the case of the GS superstring; thus avoiding the necessity of covariant [21] gauge 
fixing of the fermionic K- and reparametrization invariances. 

We are grateful for the warm hospitality and the stimulating atmosphere of the 
CERN Theory Division where this work was initiated. Two of us (E.N. and S.P.) are 
deeply indebted to E. Sokatchev and S. Kalitzin for numerous illuminating discus- 
sions on the fundamentals of harmonic superspace. It is a pleasure for E.N. and S.P. 
to thank also the Weizmann Institute of Science, Rehovot, for most cordial 
hospitality. One of us (S.S.) would like to thank J-W van Holten and Y. Eisenberg 
for very instructive discussions. We all are indebted to A. Schwimmer and N. 
Seiberg for their incentive remarks. 

Appendix 
D = 10, D = 8 A N D  D = 6 S P I N O R  C O N V E N T I O N S  

The D = 10 -{-matrices and D = 10 charge conjugation matrix are taken in the 
following representation: 

C l o  = 0 C'~g t 
( - c )  o ' 

\ 

F u -  F ° F 1 . . . F  9= ~B 0 I 
0 - ~ J 

D 
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Indices of D = 10 left- (right-) handed MW spinors ¢h~, +a are raised by means of 

Clo: 

~ =  ( -  C)~%~, 

~ = C ~ + ~ .  

Throughout the paper we use D = 10 u-matrices with undotted indices only: 

( : ) ° ~  = C°~(,~)~, 

(o.)o. = ( -  c ) ; ) (o . )~ ,  

(o")~v(o")v~ + (o") .v(o~) v~= -28ff7/~", 

~ , =  d i ag ( - ,  + , . . . ,  + ) .  

For the D = 8 y-matrices and D = 8 charge conjugation matrix we use the following 
representation: 

F~=((O~i) b (yi):),0 

(7 0 C8 = ( -  C) ab ' 

c a b =  C ba " 

Indices of S0(8) (s) and (c) spinors ff~, ~b a are raised as: 

~°= c°%~, ~a= (- c)~%~. 

D = 6 charge conjugation matrix are taken in the The D = 6 y-matrices and 
representation: 

0 
r:= (~i)~ 

0 
c~= 

(c) ~' 

Ckl = C lk" 

(~')~)'o 
7}, 
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Indices of SO(6), i.e. SU(4), (4) and (4) spinors ~k, ~/k are lowered by means of C61: 

'/'k = Ckzq¢, 

Sk = Cki'  

In  pa r t i cu l a r ,  D = 6 o -mat r i ces  wi th  u n d o t t e d  indices  a re  a n t i s y m m e t r i c :  

t i 
p' - ( p ) k c t , - -  -P /k  k l - -  
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